Weakly-supervised Semantic Parsing with Abstract Examples
نویسندگان
چکیده
Semantic parsers translate language utterances to programs, but are often trained from utterance-denotation pairs only. Consequently, parsers must overcome the problem of spuriousness at training time, where an incorrect program found at search time accidentally leads to a correct denotation. We propose that in small well-typed domains, we can semi-automatically generate an abstract representation for examples that facilitates information sharing across examples. This alleviates spuriousness, as the probability of randomly obtaining a correct answer from a program decreases across multiple examples. We test our approach on CNLVR, a challenging visual reasoning dataset, where spuriousness is central because denotations are either TRUE or FALSE, and thus random programs have high probability of leading to a correct denotation. We develop the first semantic parser for this task and reach 83.5% accuracy, a 15.7% absolute accuracy improvement compared to the best reported accuracy so far.
منابع مشابه
Semantic Graph Construction for Weakly-Supervised Image Parsing
We investigate weakly-supervised image parsing, i.e., assigning class labels to image regions by using imagelevel labels only. Existing studies pay main attention to the formulation of the weakly-supervised learning problem, i.e., how to propagate class labels from images to regions given an affinity graph of regions. Notably, however, the affinity graph of regions, which is generally construct...
متن کاملScene Parsing by Weakly Supervised Learning with Image Descriptions
This paper investigates a fundamental problem of scene understanding: how to parse a scene image into a structured configuration (i.e., a semantic object hierarchy with object interaction relations). We propose a deep architecture consisting of two networks: i) a convolutional neural network (CNN) extracting the image representation for pixel-wise object labeling and ii) a recursive neural netw...
متن کاملSemi-Supervised Learning for Semantic Parsing using Support Vector Machines
We present a method for utilizing unannotated sentences to improve a semantic parser which maps natural language (NL) sentences into their formal meaning representations (MRs). Given NL sentences annotated with their MRs, the initial supervised semantic parser learns the mapping by training Support Vector Machine (SVM) classifiers for every production in the MR grammar. Our new method applies t...
متن کاملWeakly-Supervised Video Scene Co-parsing
In this paper, we propose a scene co-parsing framework to assign pixel-wise semantic labels in weakly-labeled videos, i.e., only videolevel category labels are given. To exploit rich semantic information, we first collect all videos that share the same video-level labels and segment them into supervoxels. We then select representative supervoxels for each category via a supervoxel ranking proce...
متن کاملAny-language frame-semantic parsing
We present a multilingual corpus of Wikipedia and Twitter texts annotated with FRAMENET 1.5 semantic frames in nine different languages, as well as a novel technique for weakly supervised cross-lingual frame-semantic parsing. Our approach only assumes the existence of linked, comparable source and target language corpora (e.g., Wikipedia) and a bilingual dictionary (e.g., Wiktionary or BABELNET...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.05240 شماره
صفحات -
تاریخ انتشار 2017